

VIS: OPTICS_{vis}

Milestone 3

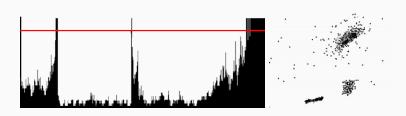
Group 11

14. Dezember 2017

Fakultät für Informatik

Agenda

1. Project


Motivation

- 2. Users and Tasks
- 3. Demo
- 4. Challenges and Problems
- 5. Future Work

Project

Project motivation

- OPTICS: density based clustering
 - algorithm jumps between points in some order
 - records jump distances
- output somewhat hard to read
 - point order
 - a list of numbers
- staple visualization method: the bar chart

Project definition

- colorizing helps a lot
- but how does it work?
- how do these numbers relate to the data?
- parameterization?
 - min pts
 - eps
 - $\rightarrow \mathsf{OPTICS}_{\mathsf{vis}}$

Users and Tasks

Users

- Teachers
 - for educational purposes
- Researchers
 - exploration
 - testing before practical usage
- Anyone
 - exploration

Tasks

- Exploration
 - get a feeling for the algorithm, get to know it
- Education
 - learn about the algorithm and how to interpret the output
- Testing
 - give an idea if the algorithm fits the users problem
 - see if result/output is satisfactory and useful

Challenges and Problems

Challenges and Problems

- slow implementation
- some aspects of the visualization rely on running the algorithm repeatedly, locks up the interface
- would benefit from backend
- hierarchical clusters are meh

Future Work

Future Work

- different similarity/distance measures?
- multiple dimensions (to select from, probably no dimensionality reduction)?
 - · doesn't really help with understanding OPTICS itself
- more/revise interaction

Thanks for your attention!
Questions?